Closed book, closed notes. Clearly circle ("O") the one choice that you think is most definitely correct. Cross out ("×") only one choice that you think is definitely incorrect.

- [4.0 points.] In December, an observer in San Luis Obispo, CA will watch the sun rising 1. on the horizon at a point:
 - (A) between northeast and east.
 - (B) due east.
 - (C) between east and southeast.
 - (D) between southwest and west.
 - (E) due west.
 - (F) between west and northwest.
- 2. [4.0 points.] What time is it when the waning crescent moon is setting?
 - (A) 12:00 PM (noon).
 - (B) 3:00 PM (afternoon).
 - (C) 6:00 PM (sunset).
 - (D) 9:00 PM (evening).
 - (E) 12:00 AM (midnight).
 - (F) 3:00 AM (wee hours).
 - (G) 6:00 AM (sunrise).
 - (H) 9:00 AM (morning).
- 3. [4.0 points.] Which phase will the moon have when it is overhead at 9:00 AM? Clearly circle your answer below.

- 4. [4.0 points.] A total lunar eclipse will be visible for observers in San Luis Obispo, CA on May 26, 2021.¹ During this total lunar eclipse, the moon will be located in:
 - (A) Earth's umbra.

4-digit PIN: | Name (last, first).

- (B) Earth's penumbra.
- (C) Earth's negative shadow.
- (D) (none of Earth's shadow zones.)
- 5. [4.0 points.] ______ explained the prograde and retrograde motion of a planet by having it move on a circle that itself moves around Earth.
 - (A) Aristotle.
 - (B) Ptolemy.
 - (C) Copernicus.
 - (D) Tycho.
 - (E) Kepler.
 - (F) Galileo.
 - (G) Newton.

Questions (6)-(10) are continued on the back of this page.

¹ timeanddate.com/eclipse/lunar/2021-may-26.

Closed book, closed notes. Clearly circle ("O") the one choice that you think is most definitely correct. Cross out (" \times ") only one choice that you think is definitely incorrect.

This quiz continues from questions (1)-(5) on the other side of this page.

For questions (6)-(8), the two far-infrared reflector telescopes of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)² have the same 0.50 m (1.6 ft) diameter, and are separated by a distance of 8.0 m (26 ft) between them. This telescope system is attached to a balloon that ascends to an altitude of 40 km (25 miles) in the upper atmosphere.³

- 6. [4.0 points.] Taking this far-infrared telescope system into the upper atmosphere improves the light-gathering power due to less ______ at high altitudes.
 - (A) absorption.
 - (B) turbulence.
 - (C) light pollution.
 - (D) temperature fluctuations.
- 7. [4.0 points.] If each of these far-infrared telescopes had been constructed with larger diameters, this would have increased the telescope system's overall:
 - (A) light-gathering power.
 - (B) resolving power.
 - (C) magnifying power.
 - (D) (Two of the above choices.)
 - (E) (All of the above choices.)
 - (F) (None of the above choices.)
- **8**. [4.0 points.] If the two mirrors of this far-infrared telescope system were instead combined into a single mirror with the same total surface area, the resolving power would:
 - (A) decrease.
 - (B) remain the same.
 - (C) increase.
 - (D) (The telescope would no longer be able to function.)
- 9. [4.0 points.] Adaptive optics is used in modern optical telescopes to improve:
 - (A) light-gathering power.
 - (B) resolving power.
 - (C) magnifying power.
 - (D) the amount of radiation transmitted through the atmosphere.
- **10**. [4.0 points.] The magnifying power of an optical telescope depends on the:
 - (A) focal length of the primary lens/mirror.
 - (B) focal length of the eyepiece.
 - (C) diameter of the primary lens/mirror.
 - (D) diameter of the eyepiece.
 - (E) (More than one of the above choices.)

