- **1**. The sun produces energy in its core by:
 - (A) burning hydrogen with oxygen.
 - (B) splitting hydrogen apart to make lighter elements.
 - (C) combining hydrogen together to make heavier elements.
 - (D) the radioactive decay of unstable elements.
 - (E) (Unsure/guessing/lost/help!)
- 2. To maintain a stable size, the sun uses ______ to counteract gravity.
 - (A) hydrogen fusion.
 - (B) degenerate matter.
 - (C) convection currents.
 - (D) strong winds.
 - (E) (Unsure/guessing/lost/help!)
- 3. Fusion requires high temperatures such that nuclei can:
 - (A) break heavy elements apart.
 - (B) undergo convection.
 - (C) capture electrons.
 - (D) overcome repulsion.
 - (E) (Unsure/guessing/lost/help!)

			[dimmest luminosity]	
4.	A	_ main-sequence star has the	brightest luminosity	
			slowest fusion rate	
			fastest fusion rate	
			shortest lifetime	
			longest lifetime	

- (A) low-mass (red dwarf).
- (B) medium-mass (sunlike).
- (C) massive.
- (D) (There is a tie.)
- (E) (Unsure/guessing/lost/help!)

5.	Massive main-sequence stars	are more luminous	than low-mass main-sequence stars
		have shorter lifetimes	than low mass main sequence stars

because massive main-sequence stars:

- (A) lack hydrostatic equilibrium.
- (B) have unstable heavy elements.
- (C) have more convection.
- (D) fuse hydrogen more rapidly.
- (E) (Unsure/guessing/lost/help!)

- 6. There are no main-sequence stars less than 0.08 solar masses because these stars would not:
 - (A) be bright enough.
 - (B) have heavy elements.
 - (C) be hot enough.
 - (D) have convection.
 - (E) (Unsure/guessing/lost/help!)
- 7. The main-sequence lifetime of a $\begin{bmatrix} 0.5\\ 2.0 \end{bmatrix}$ solar mass main-sequence star is _____ the

main-sequence lifetime of the sun.

- (A) more than twice.
- (B) twice.
- (C) about the same as.
- (D) one-half.
- (E) less than one-half.
- (F) (Unsure/guessing/lost/help!)

Spectral type	Mass (the sun = 1)	Luminosity (the sun = 1)	Main-sequence lifetime
F0 (medium-mass)	1.7	6.4	3 billion years
G2 (the sun)	1.0	1.0	10 billion years
M0 (low-mass)	0.5	0.08	56 billion years

8. The rate of hydrogen fusion in the core of a $\begin{bmatrix} 0.5\\ 2.0 \end{bmatrix}$ solar mass main-sequence star is

_ the rate of hydrogen fusion in the core of the sun.

- (A) more than twice.
- (B) twice.
- (C) about the same as.
- (D) one-half.
- (E) less than one-half.
- (F) (Unsure/guessing/lost/help!)

pink color of an emission nebula

- 9. The blue color of a reflection nebula is caused by: dark brown color of a dark nebula
 - (A) electrons moving to lower orbitals.
 - (B) scattered light from stars.
 - (C) light blocked by dense clouds of gas and dust.
 - (D) supernovae shockwaves.
 - (E) (Unsure/guessing/lost/help!)

10. A reflection nebula appears to be blue because its dust particles:

- (A) emit blue photons.
- (B) absorb red light.
- (C) scatter blue light.
- (D) have cool temperatures.
- (E) (Unsure/guessing/lost/help!)
- 11. A nebula is observed to have regions of pink, blue, and dark brown colors.

The composition of the blue color regions is: dark brown

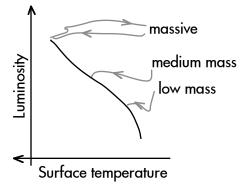
- (A) hydrogen gas.
- (B) very small dust particles.
- (C) dense clumps of large dust particles.
- (D) helium gas.
- (E) (Unsure/guessing/lost/help!)
- _____ light can be seen from stars behind a dark nebula.
- (A) Infrared.
- (B) Ultraviolet.
- (C) Blue.

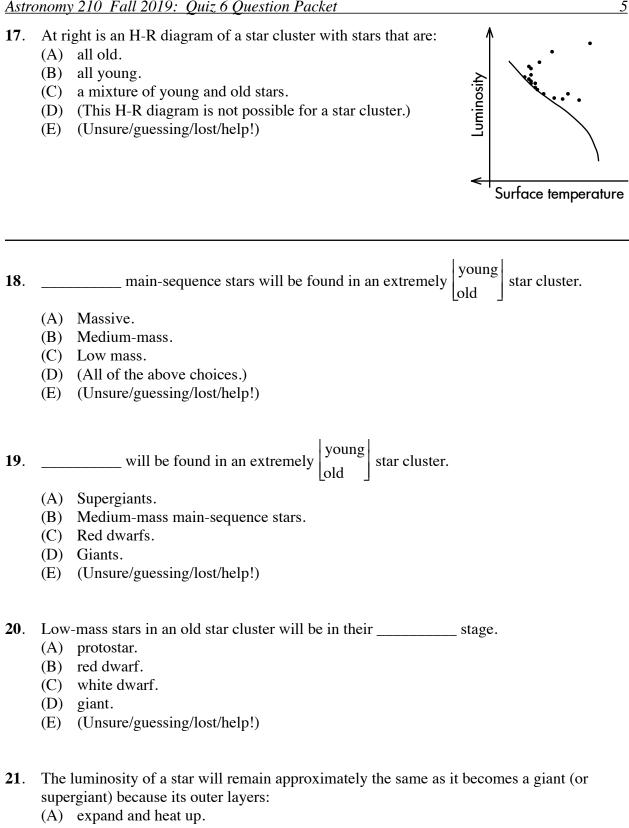
12.

- (D) Doppler shifted.
- (E) (Unsure/guessing/lost/help!)

13.

is evidence that supernova explosions trigger star formation.


- (A) Interstellar reddening.
- (B) Very dense, giant molecular clouds.
- (C) Observations at non-visible wavelengths.
- (D) Young stars at shockwave edges.
- (E) (Unsure/guessing/lost/help!)


14. ____ provides the energy that heats up a protostar before it becomes a mainsequence star.

- (A) Hydrogen fusion.
- (B) Supernovae shockwaves.
- (C) Gravitational contraction.
- (D) Convection currents.
- (E) (Unsure/guessing/lost/help!)
- 15. As a protostar becomes a main sequence star, its size will ______ and its surface temperature will _____.
 - (A) decrease; decrease.
 - (B) decrease; increase.
 - (C) increase; decrease.
 - (D) increase; increase.
 - (E) (Unsure/guessing/lost/help!)
- 16. At right is an H-R diagram of the evolutionary tracks of stars of different masses.

Which track takes the $\begin{bmatrix} \text{shortest} \\ \text{longest} \end{bmatrix}$ time?

- (A) The massive protostar as it becomes a main sequence star, and then becomes a supergiant.
- The medium mass protostar as it becomes a **(B)** main sequence star.
- (C) The low mass protostar as it becomes a main sequence star.
- (D) (There is a tie.)
- (E) (Unsure/guessing/lost/help!)

- (B) expand and cool off.
- (C) contract and heat up.
- (D) contract and cool off.
- (E) (Unsure/guessing/lost/help!)

massive

- **22**. A medium mass star will (eventually) end its main-sequence lifetime when: low mass
 - (A) gravity is too strong.
 - (B) convection currents stop.
 - (C) no hydrogen is left.
 - (D) core temperatures get too cold.
 - (E) (Unsure/guessing/lost/help!)

 23. The energy source of a(n) [protostar main - sequence star supergiant giant red dwarf isolated white dwarf
]

- (A) hydrogen fusion.
- (B) fusion of elements heavier than hydrogen.
- (C) gravitational contraction.
- (D) radioactive decay.
- (E) (Does not produce energy.)
- (F) (Unsure/guessing/lost/help!)
- 24. A red dwarf will never become a giant because:
 - (A) no red dwarfs have died yet.
 - (B) it is made of degenerate matter.
 - (C) its core will never get hot enough to fuse helium.
 - (D) it will never run out of hydrogen to fuse.
 - (E) (Unsure/guessing/lost/help!)
- **25**. A giant will form a planetary nebula by:
 - (A) expelling its outer layers.
 - (B) imploding, then exploding.
 - (C) forming an accretion disk.
 - (D) breaking down degenerate matter.
 - (E) (Unsure/guessing/lost/help!)

- 26. An isolated white dwarf cannot fuse its carbon and oxygen because:
 - (A) its core will never get hot enough.
 - (B) it has run out of helium to fuse.
 - (C) its planetary nebula phase expended its energy.
 - (D) it is made of degenerate matter.
 - (E) (Unsure/guessing/lost/help!)

27. As an isolated white dwarf gets older and dimmer, its surface temperature ______, while its size ______.

- (A) cools off; decreases.
- (B) cools off; remains the same.
- (C) remains the same; decreases.
- (D) remains the same; remains the same.
- (E) heats up; decreases.
- (F) heats up; remains the same.
- (G) (Unsure/guessing/lost/help!)

28. In the final stages of fusion energy production, since supergiants giants will fuse: red dwarfs

- (A) hydrogen.
- (B) helium.
- (C) carbon, and heavier elements up to iron.
- (D) (None of the above choices.)
- (E) (Unsure/guessing/lost/help!)

29. The energy source for a type Ia supernova is: type II supernova

- (A) the fusion of an outer layer of hydrogen around a white dwarf.
- (B) the fusion of an entire white dwarf.
- (C) gravitational contraction.
- (D) the fusion of elements heavier than iron.
- (E) (Unsure/guessing/lost/help!)

nova

- **30**. A type Ia supernova begins when a star: type II supernova
 - (A) accumulates enough hydrogen from a companion star.
 - (B) generates strong stellar winds.
 - (C) has too much radioactivity.
 - (D) removes energy from its core using fusion.
 - (E) (Unsure/guessing/lost/help!)
- **31**. The iron core of a supergiant will collapse because fusion past iron:
 - (A) removes energy.
 - (B) generates radioactive elements.
 - (C) creates too much gravity.
 - (D) is impossible.
 - (E) (Unsure/guessing/lost/help!)

32. The sun will never explode as a nova type Ia supernova because it: type II supernova

- (A) will have nothing left after its planetary nebula phase.
- (B) did not start with enough mass.
- (C) has no companion star.
- (D) has a main sequence lifetime that is too long.
- (E) (Unsure/guessing/lost/help!)

			black hole	
			giant	
			neutron star	
33.	Α	main-sequence star will become a	planetary nebula	•
			red dwarf	
			supergiant white dwarf	
			white dwarf	

- (A) massive.
- (B) medium-mass.
- (C) low-mass.
- (D) (Two of the above choices.)
- (E) (All of the above choices.)
- (F) (None of the above choices.)
- (G) (Unsure/guessing/lost/help!)

8

	is the most ma				
34.	Which type of compact object has the largest				
	has the greatest density				
	(A) White dwarf.				
	(B) Neutron star.(C) Black hole.				
	(D) (There is a tie.)				
	(E) (Unsure/guessing/lost/help!)				
			[nova]		
35.	A white dwarf with a companion	can have a		n	
55.	white dwarf with a companion can have a		type II supernova	л.	
	(A) giant.				
	(B) protostar.				
	(C) neutron star.				
	(D) black hole.				
	(E) (This type of explosion is impossible.)(F) (Unsure/guessing/lost/help!)				
	(r) (Onsure/guessing/lost/neip:)				
		nova exp	losions		
		a type Ia	a supernova explosion		
36.	A with a companion star can have	a glowing	a glowing x - ray accretion disk		
50.	A with a companion star can have	Í x - ray pu	ilses		
		mass >	3.0 solar masses		
		ejected je	ets		
	(A) white dwarf.				
	(B) neutron star.				
	(C) black hole.(D) (Two of the above choices.)				
	(E) (All of the above choices.)				
	(F) (None of the above choices.)				
	(G) (Unsure/guessing/lost/help!)				
	white dwarf				
37.	Evidence of a neutron star in a binary system	n would be	:		
	black hole				
	(A) a mass greater than $3.0 M_{Sun}$.				
	(B) regularly timed x-ray pulses.				
	(C) zero mass.				
	(D) repeated nova bursts.(E) (Unsure/guessing/lost/help!)				
	(, (, g, g, root norp.)				